sults. The Peng-Robinson equation of state was used for both the Mixon et al. and Barker methods. Table XIV lists the compound constants used for the Peng-Robinson equation. The binary interaction constant was set to 0.0 for all three binaries.

Registry No. Diethylamine, 109-89-7; methanol, 67-56-1; acetonitrile, 75-05-8; acetone, 67-64-1.

Literature Cited

(1) Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.

- (2) Mixon, F. O.; Gumowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1965, 4, 455. (3) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15,
- (4) Barker, J. A. Aust. J. Chem. 1953, 6, 207.

Received for review August 8, 1984. Accepted October 24, 1984. The financial support received from the National Science Foundation Grant CPE-8201579 and from the Industrial Participants in the Thermodynamics Research Laboratory is gratefully acknowledged.

Total Pressure Vapor-Liquid Equilibrium Data for Binary Systems of Dichloromethane with Benzene, Toluene, Nitromethane, and Chlorobenzene

Τ

Rakesh Srivastava and Buford D. Smith*

Thermodynamics Research Laboratory, Washington University, St. Louis, Missouri 63130

Total pressure vapor-liquid equilibrium (VLE) data are reported at 298 and 348 K for the binaries of dichloromethane with benzene and toluene and at 298, 348, and 398 K for dichloromethane with nitromethane and chlorobenzene. The experimental PTx data were reduced by both the Mixon-Gumowski-Carpenter and the Barker methods; the Mixon et al. results were deemed better and are reported. Six G^E correlations were tested in the Barker data reduction. Various equations of state were used to estimate vapor-phase fugacity coefficients; the Peng-Robinson results were used for the values reported.

Introduction

The data for the four systems covered in this paper were measured as part of a continuing effort to expand the vaporliquid equilibrium data base for a general correlation of mixture properties. The apparatus and techniques for the experimental measurements-as well as the defining equation for the activity coefficient and the standard states used-were the same as described by Maher and Smith (1).

Chemicals Used

Table I lists the chemicals used and their stated purities. All chemicals were available in at least 99.9% purity. Activated molecular sieves (4 Å) were put into the containers with the chemicals as they were received. The chemicals were distilled through a Vigreux column (25-mm o.d. and 470-mm long) before they were loaded into the VLE cells. The first and last

Table I. Chemicals Used

component	vendor	purity, %
dichloromethane	Burdick and Jackson	99.9+
benzene	Burdick and Jackson	99.9+
toluene	Burdick and Jackson	99.9
nitromethane	Mallinckrodt	99.9
chlorobenzene	Burdick and Jackson	99.9+

Dichloromethane (1) + Benzene (2) System	Table II. Experin	aental P vs. x_1	Values for the
	Dichloromethane	(1) + Benzene	(2) System

	298.15 K			348.00	K
	Ρ,	KPA		Ρ,	KPA
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH
0.0 0.0547 0.0781 0.2045 0.2999 0.4443 0.5461 0.6299 0.7144 0.8094 0.8715 0.9250 0.9678	12.667 14.866 15.791 17.004 20.939 25.080 31.61 36.46 40.44 44.47 49.02 51.95 54.47 55.47 56.49	12.668 14.863 15.786 17.016 20.936 25.068 31.64 36.44 40.44 44.49 49.01 51.95 54.47 56.48	0.0 0.0546 0.0779 0.1087 0.2040 0.2996 0.4436 0.5454 0.6294 0.7140 0.8091 0.8712 0.9248 0.9677	86.09 96.40 100.81 106.71 125.64 145.74 177.06 200.05 219.49 239.23 261.72 276.3 288.9 299.0	86.09 96.41 100.81 106.68 125.67 145.70 177.09 200.05 219.45 239.28 261.69 276.3 288.9 298.9

Table III.	Experimen	ntal P vs. x	Values for	the
Dichlorom	ethane (1)	+ Toluene	(2) System	

	298.15	K	347.99 K			
	Ρ,	КРА		P, KPA		
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	
0.0	3.920	3.921	0.0	32.71	32.71	
0.0520	6.241	6.242	0.0517	44.51	44.51	
0.0904	7.998	7.991	0.0897	53.37	53.34	
0.1536	10.944	10.963	0.1526	68.35	68.39	
0.2167	14.100	14.079	0.2159	84.17	84.17	
0.3043	18.623	18.630	0.3038	107.07	107.00	
0.4048	24.104	24.124	0.4042	134.02	134.09	
0.5093	30.08	30.04	0.5084	163.13	163.12	
0.6039	35.45	35.48	0.6032	190.27	190.24	
0.7019	41.12	41.13	0.7015	218.88	218.90	
0.7907	46.23	46.21	0.7899	244.95	244.93	
0.8617	50.25	50.26	0.8613	265.93	265.95	
0.9339	54.31	54.32	0.9337	287.2	287.1	
0.9577	55.66	55.65	0.9576	294.1	294.1	
1.0000	58.00	58.00	1.0000	306.5	306.5	

Table IV. Experimental P vs. x_1 Values for the Dichloromethane (1) + Nitromethane (2) System

298.05 K			347.99 K			398.13 K			
P, KPA			P, KPA				P, KPA		
X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	
0.0 0.0416 0.0827 0.1436 0.2112 0.3040 0.3997 0.4986 0.6106 0.6878 0.7832 0.8543 0.9160 0.9532	4.808 8.570 11.906 16.444 20.891 26.331 31.26 35.89 40.83 44.13 48.10 50.95 53.37 54.78	4.814 8.551 11.927 16.436 20.898 26.317 31.27 35.91 40.83 44.13 48.10 50.96 53.36 54.77	0.0 0.0413 0.0825 0.1432 0.2108 0.3036 0.3993 0.4983 0.6102 0.6874 0.7828 0.8540 0.9159 0.9531	41.95 59.38 75.35 97.07 119.21 146.24 171.44 195.51 220.74 237.94 257.94 273.80 287.5 296.0	41.97 59.30 75.37 97.18 119.12 146.21 171.48 195.52 220.86 237.65 258.19 273.69 287.5 296.0	0.0 0.0408 0.0819 0.1426 0.2103 0.3031 0.3981 0.4981 0.6096 0.6869 0.7824 0.8537 0.9156 0.9529	203.11 253.38 300.3 364.6 431.6 514.2 592.6 670.9 752.3 803.8 870.0 917.7 960.6 988.2	203.21 253.06 300.4 365.1 431.1 514.0 593.1 670.9 751.4 804.8 869.5 917.8 960.8 987.9	

Table V. Experimental P vs. x_1 Values for the Dichloromethane (1) + Chlorobenzene (2) System

	298.03 K			347.97 K	:	398.10 K			
	P, 1	KPA		Р, КРА			P, KPA		
X1	EXPTL	SMOOTH	X1	EXPTL	SMOOTH	X 1	EXPTL	SMOOTH	
0.0 0.0492 0.0765 0.1477 0.2175 0.3045 0.4036 0.4973 0.6012 0.7020 0.7891 0.8575 0.9171 0.9579	1.682 4.578 6.158 10.283 14.303 19.242 24.809 30.03 35.74 41.29 46.06 49.81 53.12 55.39	1.682 4.576 6.163 10.283 14.298 19.245 24.814 30.02 35.75 41.28 46.06 49.81 53.11 55.39	0.0 0.0483 0.0757 0.1468 0.2168 0.3041 0.4030 0.4966 0.6001 0.7016 0.7016 0.7888 0.8572 0.9169 0.9577	16.212 30.23 38.01 58.47 78.59 103.60 131.89 158.72 188.56 217.96 243.56 263.73 281.4 293.6	16.223 30.17 38.07 58.47 78.57 103.60 131.91 158.71 158.71 188.52 218.00 243.55 263.70 281.4 293.6	0.0 0.0466 0.0745 0.1451 0.2154 0.3032 0.4008 0.4962 0.5998 0.7006 0.7876 0.8565 0.9164 0.9575	84.12 126.59 149.04 211.03 272.19 350.5 439.1 525.4 622.7 718.5 803.3 870.7 931.8 976.7	84.81 125.22 149.45 210.99 272.76 350.7 438.5 525.8 622.6 718.7 803.1 870.9 931.8 976.7	

Table VI. Calculated Data for the Dichloromethane (1) + Benzene (2) System at 298.15 K

LIQUID	MOLAR VOLU	UMES, ML/M	IOL: COL	IPONENT	1 = 64.81	COMPON	ÉNT 2 =	89.41
	P, 1	(PA	FUGA COEFFI	CITY CIENTS		ACTI CO EFF I	VITY CIENTS	GE
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.350 0.400 0.450 0.550 0.600 0.650	12.668 14.675 16.652 18.670 20.748 22.882 25.070 27.308 29.588 31.906 34.253 36.622 39.008 41.402	12.668 14.675 16.652 18.670 20.748 22.882 25.070 27.307 29.588 31.905 34.252 36.621 39.007 41.401	0.9968 0.9950 0.9950 0.9938 0.9932 0.9932 0.9920 0.9913 0.9907 0.9900 0.9894 0.9887	0.9945 0.9936 0.9928 0.9919 0.9910 0.9902 0.9883 0.9883 0.9883 0.9855 0.9855 0.9855 0.9855 0.9845 0.9845 0.9845	0.0 0.1788 0.3135 0.4216 0.5848 0.6472 0.7003 0.7458 0.7458 0.8189 0.8485 0.8143 0.8743 0.8743	0.9324 0.9172 0.9177 0.9158 0.9238 0.9328 0.9420 0.9510 0.9595 0.9673 0.9743 0.9805 0.9858 0.9902	1.0000 1.0004 1.0008 1.0001 0.9982 0.9954 0.9917 0.9871 0.9879 0.9760 0.9697 0.9630 0.9560 0.9560	0.0 -9.81 -21.16 -32.54 -42.84 -51.69 -68.91 -64.40 -68.14 -70.12 -70.38 -68.96 -65.93 -61.37
0.700 0.750 0.800 0.850 0.900 0.950	43.797 46.186 48.566 50.936 53.298 55.649	43.795 46.184 48.565 50.936 53.297 55.649	0.9881 0.9874 0.9867 0.9861 0.9855 0.9848	0.9816 0.9807 0.9797 0.9787 0.9778 0.9768	0.9171 0.9349 0.9507 0.9649 0.9777 0.9893	0.9937 0.9962 0.9980 0.9992 0.9998 1.0000	0.9421 0.9357 0.9300 0.9250 0.9210 0.9184	-55.41 -48.20 -39.92 -30.75 -20.86 -10.46
1.000	57.993	57.993	0.9842	0.9759	1.0000	1.0000	0.9219	. 0.0

Table VII. Calculated Data for the Dichloromethane (1) + Benzene (2) System at 348.00 K

LIQUID	MOLAR VOI	UMES, ML/	MOL: CO	MPONENT	1 = 69.42	COMPON	TENTI2 ≠	95.32
	FUGACITY P, KPA COEFFICIENT					ACTI COEFFI	GE	
X1	EXPTL	CALC	1	2	Yl	1	2	J/MOL
$\begin{array}{c} 0 & 0 \\ 0 & 0.50 \\ 0 & 150 \\ 0 & 200 \\ 0 & 250 \\ 0 & 300 \\ 0 & 350 \\ 0 & 450 \\ 0 & 500 \\ 0 & 550 \\ 0 & 600 \\ 0 & 650 \\ 0 & 700 \\ \end{array}$	86.087 95.547 105.013 114.769 124.857 135.218 145.796 156.539 167.440 178.499 189.716 201.091 212.617 224.262 235.987	86.087 95.546 105.011 114.766 124.853 135.215 145.791 156.535 167.435 178.494 189.712 201.087 212.613 224.259 235.984	0.9855 0.9836 0.9817 0.9798 0.9778 0.9738 0.9718 0.9697 0.9656 0.9635 0.9614 0.9571	0.9747 0.9720 0.9693 0.9665 0.9580 0.9550 0.9550 0.9550 0.9551 0.9491 0.9491 0.9461 0.9430 0.9368 0.9337	0.0 0.1412 0.2575 0.3571 0.4432 0.5178 0.5825 0.6389 0.6885 0.7323 0.7712 0.8060 0.8373 0.8654 0.8906	0.9299 0.9218 0.9217 0.9293 0.9390 0.9482 0.9563 0.9631 0.9631 0.9690 0.9743 0.9791 0.9837 0.9879 0.9879 0.9916	1.0000 1.0002 1.0001 0.9989 0.9967 0.9939 0.9907 0.9874 0.9838 0.9798 0.9798 0.9754 0.9704 0.9648 0.9587 0.9526	0.0 -11.26 -23.26 -34.51 -44.06 -51.77 -57.70 -62.04 -64.93 -66.44 -66.57 -65.31 -62.62 -58.46 -52.88
0.750 0.800 0.850 0.900 0.950	247.757 259.545 271.329 283.089 294.802	247.754 259.542 271.327 283.088 294.802	0.9550 0.9528 0.9507 0.9485 0.9464	0.9306 0.9274 0.9243 0.9212 0.9181	0.9134 0.9340 0.9527 0.9698 0.9854	0.9971 0.9989 0.9999 1.0004 1.0004	0.9465 0.9410 0.9363 0.9332 0.9340	-45.96 -37.86 -28.75 -18.92 -8.84

Figure 1. Deviations from Raoult's law for the dichloromethane (1) + benzene (2) system.

Figure 2. Deviations from Raoult's law for the dichloromethane (1) + toluene (2) system.

portions of the distillate were discarded. The retained samples were backflushed with nitrogen and put into amber glass bottles for transfer to the loading operation. The initial purity of each chemical was verified chromatographically. None of the com-

Figure 3. Deviations from Raoult's law for the dichloromethane (1) + nitromethane (2) system. The ordinate values run from 0.0 to 120.0.

Figure 4. Deviations from Raoult's law for the dichloromethane (1) + chlorobenzene (2) system.

pounds exhibited any degradation during the experimental measurements; the cell pressures were stable with respect to

Figure 5. Activity coefficients for the dichloromethane (1) + benzene (2) system: curves from Barker results; points from Mixon et al. method. The ordinate values run from 0.9 to 1.020.

Figure 6. Activity coefficients for the dichloromethane (1) + toluene (2) system: curves from Barker results; points from Mixon et al. method. The ordinate values run from 0.840 to 1.060.

time, and all liquids were perfectly clear when removed from the cells at the end of the last isotherm. Table VIII. Calculated Data for the Dichloromethane (1) + Toluene (2) System at 298.15 K LIQUID MOLAR VOLUMES, ML/MOL: COMPONENT 1 = 64.81 COMPONENT 2 = 106.90

	P, KPA		FUGACITY COEFFICIENTS			ACTI COEFFI	GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0	3.921	3.921	0.9992	0.9976	0.0	0.8425	1.0000	0.0
0.050	6.152	6.152	0.9985	0.9964	0.3939	0.8489	0.9998	-20.79
0.100	8.435	8.435	0.9978	0.9951	0.5810	0.8578	0.9989	-40.44
0.150	10.791	10.791	0.9971	0.9938	0.6908	0.8693	0.9970	-58.44
0.200	13.240	13.240	0.9964	0.9925	0.7633	0.8831	0.9936	-74.28
0.250	15.779	15.779	0.9957	0.9912	0.8144	0.8977	0.9889	-87.60
0.300	18,400	18.400	0.9950	0.9898	0.8521	0.9120	0.9830	-98.25
0.350	21.096	21.095	0.9943	0.9884	0.8809	0.9258	0.9759	-106.17
0.400	23.854	23.853	0.9935	0.9869	0.9034	0.9386	0.9679	-111.35
0.450	26.661	26.661	0.9927	0.9855	0.9214	0.9502	0.9592	-113.83
0.500	29.506	29.506	0.9920	0.9840	0.9359	0.9606	0.9498	-113.70
0.550	32.376	32.375	0.9912	0.9825	0.9479	0.9696	0.9401	-111.07
0.600	35.258	35.257	0.9904	0.9810	0.9579	0.9772	0.9302	-106.08
0.650	38.140	38.140	0.9896	0.9794	0.9662	0.9834	0.9204	-98.89
0.700	41.018	41.017	0.9888	0.9779	0.9733	0.9884	0.9107	-89.70
0.750	43.888	43.888	0.9880	0.9764	0.9794	0.9924	0.9012	-78.64
0.800	46.747	46.746	0.9872	0.9749	0.9847	0.9955	0.8918	-65.83
0.850	49.591	49.590	0.9865	0.9734	0.9893	0.9977	0.8825	-51.40
0.900	52.416	52.416	0.9857	0.9720	0.9933	0.9991	0.8735	- 35 . 46
0.950	55.220	55.220	0.9849	0.9705	0.9968	0.9999	0.8653	-18.16
1.000	57.997	57.997	0.9842	0.9690	1.0000	1.0000	0.8655	0.0

Table IX. Calculated Data for the Dichloromethane (1) + Toluene (2) System at 347.99 K

LIQUID	NOLAR	VOLUMES,	NL/MOL:	COMPONENT 1	Ξ	69.42	COMPONENT 2 = 113.10	

	Ρ,	КРА	FUG COEFF	ACITY		ACTI COEFFI	GE	
X1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.250 0.250 0.300 0.350 0.450 0.550 0.650 0.700 0.750 0.800 0.800 0.900	32.708 44.117 55.768 67.753 80.142 92.906 119.337 132.924 146.734 160.748 174.949 189.318 203.836 218.465 233.165 247.895 262.615 277.287	32.708 44.115 55.765 67.750 80.138 92.902 105.984 119.332 132.920 146.730 160.745 174.946 189.316 203.834 218.464 233.163 247.894 262.614 267.287	0.9955 0.9930 0.9906 0.9882 0.9834 0.9834 0.9734 0.9734 0.9739 0.9734 0.9656 0.9652 0.9656 0.9549 0.9522 0.9549	0.9868 0.9823 0.9780 0.9737 0.9602 0.9556 0.9559 0.9461 0.9413 0.9315 0.9266 0.9216 0.9116 0.9116 0.9067 0.9067	0.0 0.2923 0.6674 0.5845 0.6686 0.7315 0.8185 0.8496 0.8751 0.8964 0.9144 0.9298 0.9431 0.9546 0.9643 0.9643 0.9646 0.9735 0.9813 0.9813	0.8852 0.8904 0.9066 0.9175 0.9284 0.9386 0.9478 0.9560 0.9634 0.9816 0.9865 0.9907 0.9968 0.9986	1.0000 0.9998 0.9992 0.9977 0.9952 0.9817 0.9831 0.9780 0.9724 0.9663 0.9525 0.9247 0.9525 0.9247 0.9249 0.9194 0.9194	0.0 -17.24 -33.45 -48.20 -61.04 -71.69 -80.13 -80.13 -80.74 -93.06 -93.45 -91.93 -88.52 -83.21 -76.01 -66.95 -56.12 -43.64 -29.77
0.950 1.000	291.904 306.472	291.904 306.472	0.9469 0.9443	0.8968 0.8919	0.9944 1.0000	1.0001	0.9003 0.9093	-14.90 0.0

Table X. Calculated Data for the Dichloromethane (1) + Nitromethane (2) System at 298.05 K

LIQUID	HOLAR VOL	UMES, ML/M	IOL: CO	PONENT	1 = 64.81	COMPON	ENT 2 =	53.94
	P, 1	KPA .	FUG. COEFF	ACITY ICIENTS		ACTI COEFFI	VITY CI ENT S	GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0	4.814	4.814	0.9988	0.9980	0.0	1.7779	1.0000	0.0
0.050	9.266	9.267	0.9975	0.9962	0.5048	1.6793	1.0014	67.60
0.100	13.260	13.261	0.9964	0.9946	0.6702	1.5933	1.0057	128.11
0.150	16.879	16.879	0.9954	0.9931	0.7532	1.5178	1.0127	181.65
0.200	20.194	20.195	0.9945	0.9918	0.8038	1.4519	1.0223	228.44
0.250	23.253	23.253	0.9937	0.9905	0.8381	1.3932	1.0346	268.61
0.300	26.095	26.096	0.9929	0.9894	0.8632	1.3409	1.0497	302.20
0.350	28.761	28.762	0.9921	0.9883	0.8826	1.2942	1.0678	329.27
0.400	31.279	31.279	0.9915	0.9873	0.8983	1.2524	1.0890	349.85
0.450	33.673	33.674	0.9908	0.9864	0.9114	1.2150	1.1137	363.90
0.500	35.970	35.970	0.9902	0.9855	0.9226	1.1816	1.1421	371.40
0.550	38.193	38.193	0.9896	0.9846	0.9324	1.1520	1.1746	372.30
0.600	40.368	40.368	0.9890	0.9837	0.9413	1.1261	1.2113	366.56
0.650	42.517	42.517	0.9884	0.9828	0.9496	1.1036	1.2526	354.19
0.700	44.643	44.642	0.9878	0.9820	0.9572	1.0840	1.3002	335.09
0.750	46.736	46.735	0.9872	0.9812	0.9644	1.0665	1.3574	308.94
0.800	48.790	48.789	0.9867	0.9803	0.9712	1.0505	1.4302	274.98
0.850	50.795	50.795	0.9861	0.9795	0.9778	1.0357	1.5298	231.89
0.900	52.748	52.747	0.9856	0.9788	0.9843	1.0219	1.6822	177.21
0.950	54.652	54.652	0.9851	0.9780	0.9912	1.0094	1.9654	105.86
1.000	56.518	56.518	0.9846	0.9773	1.0000	1.0000	3.1843	0.0

Experimental Data

The experimental PTx data measured for the four systems are given in Tables II-V. The "smooth" pressure values reported are from the least-squares cubic splined fits used to interpolate the experimental P vs. x_1 values to provide the evenly spaced values required by the finite-difference Mixon et al. method (2). The experimental data are plotted in Figures

Table XI. Calculated Data for the Dichloromethane (1) + Nitromethane (2) System at 347.99 K

LIQUID	MOLAR VOL	UMES, ML/	MOL: CO	IPONENT	1 = 69.42	COMPON	ÉNT 2 =	57.21
	P,	KPA	FUG Co eff	ACITY ICIENTS		ACTI COEFFI	VITY CIENTS	GE
X1	EXPTL	CALC	1	2	۲ı	1	2	J/MOL
0.0	41.972	41.972	0.9927	0.9883	0.0	1.6251	1.0000	0.0
0.050	62.789	62.787	0.9888	0.9827	0.3603	1.5522	1.0012	66.84
0.100	81.883	81.881	0.9852	0.9775	0.5310	1.4856	1.0047	126.85
0.150	99.470	99.466	0.9820	0.9728	0.6313	1.4251	1.0107	179.99
0.200	115.758	115.754	0.9790	0.9685	0.6979	1.3703	1.0192	226.25
0.250	130.942	130.937	0.9762	0.9644	0.7458	1.3209	1.0301	265.65
0.300	145.216	145.211	0.9736	0.9607	0.7824	1.2768	1.0434	298.23
0.350	158.757	158,751	0.9711	0.9571	0.8116	1.2376	1.0592	324.08
0.400	171.667	171.661	0.9688	0.9537	0.8357	1.2025	1.0777	343.2
0.450	184.027	184.021	0.9665	0.9504	0.8562	1.1709	1.0991	355.79
0.500	195.916	195.910	0.9644	0.9473	0.8740	1.1423	1.1240	361.54
0.550	207.414	207.408	0.9623	0.9443	0.8898	1.1165	1.1527	360.42
0.600	218.600	218.595	0.9602	0.9414	0.9040	1.0933	1.1859	352.25
0.650	229.555	229.550	0.9583	0.9385	0.9172	1.0727	1.2242	336.84
0.700	240.364	240.360	0.9563	0.9357	0.9295	1.0546	1.2683	313.97
0.750	251.117	251.113	0.9543	0.9329	0.9414	1.0390	1.3191	283.39
0.800	261.901	261.897	0.9524	0.9301	0.9529	1.0259	1.3780	244.82
0.850	272.805	272.803	0.9504	0.9272	0.9643	1.0155	1.4465	197.93
0.900	283.915	283.913	0.9484	0.9244	0.9757	1.0076	1.5279	142.29
0.950	295.297	295.297	0.9463	0.9214	0.9875	1.0023	1.6302	77.13
1.000	307.013	307.013	0.9442	0.9184	1.0000	1.0000	1.8073	0.0

Table XII. Calculated Data for the Dichloromethane (1) + Nitromethane (2) System at 398.13 K

LIQUID HOLAR VOLUMES, ML/HOL: COMPONENT 1 = 75.79 COMPONENT 2 = 61.03

	P, KPA		FUGACITY COEFFICIENTS			ACTIVITY COEFFICIENTS		GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL	
0.0 0.050 0.100 0.250 0.200 0.250 0.300 0.350 0.450 0.450 0.550 0.550 0.600 0.700 0.700 0.700 0.800	203.215 263.895 320.260 372.645 421.478 467.450 511.294 553.636 594.605 634.176 672.326 672.326 709.088 744.707 779.470 813.667 847.563 881 380	203.215 263.886 320.249 372.632 421.467 467.443 553.633 594.606 634.178 672.331 709.097 744.716 813.677 847.572 881.388	0.9757 0.9677 0.9603 0.9536 0.9474 0.9415 0.9306 0.9306 0.9255 0.9255 0.9157 0.9111 0.9066 0.9023 0.8980 0.8938 0.8938	0.9610 0.9996 0.9391 0.9294 0.9205 0.8965 0.8965 0.8862 0.8852 0.8687 0.8687 0.8663 0.8663 0.8663 0.8563 0.8563 0.8502 0.8443 0.8384	0.0 0.2580 0.4117 0.5143 0.5883 0.6449 0.6904 0.7285 0.7610 0.7892 0.8140 0.8362 0.8565 0.8753 0.8933 0.9106 0.9277	1.5658 1.5010 1.4408 1.3848 1.3333 1.2875 1.2478 1.2137 1.1838 1.2137 1.1838 1.1565 1.1313 1.1078 1.0865 1.0491 1.0340 1.0214	1.0000 1.0011 1.0044 1.0101 1.0183 1.0287 1.0409 1.0549 1.0764 1.0894 1.1114 1.1376 1.2045 1.22464 1.22464 1.2248	0.0 70.64 134.04 190.02 238.43 279.28 312.81 339.38 359.28 379.01 378.34 370.14 354.05 329.76 296.94 255.24	
0.850 0.900 0.950 1.000	915.334 949.778 985.729 1024.413	915.341 949.781 985.729 1024.413	0.8853 0.8811 0.8766 0.8718	0.8325 0.8265 0.8203 0.8137	0.9448 0.9623 0.9809 1.0000	1.0111 1.0036 0.9999 1.0000	1.4171 1.4932 1.5613 1.5150	204.24 143.43 73.29 0.0	

Table XIII. Calculated Data for the Dichloromethane (1) + Chlorobenzene (2) System at 298.03 K

LIQUID	HOLAR VOL	UMES, ML/	MOL: CO	PONENT	1 = 64.81	COMPON	TENT 2 = 1	12.56	
	P, KPA		FUGACITY COEFFICIENTS			ACTIVITY COEFFICIENTS		GE	
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL	
0.0	1.682	1.682	0.9997	0.9989	0.0	1.0824	1.0000	0.0	
0.050	4.620	4.620	0.9988	0.9971	0.6533	1.0617	1.0004	8.43	
0,100	7.523	7.523	0.9980	0.9955	0.7978	1.0547	1.0009	15.26	
0.150	10.416	10.416	0.9972	0.9938	0.8618	1.0506	1.0015	21.46	
0.200	13.294	13.294	0.9964	0.9922	0.8978	1.0468	1.0022	27.13	
0.250	16.153	16.153	0.9956	0.9906	0.9209	1.0428	1.0034	32.23	
0.300	18.991	18.991	0.9948	0.9890	0.9370	1.0387	1.0049	36.68	
0.350	21.811	21.810	0.9940	0.9874	0.9489	1.0346	1.0068	40.42	
0.400	24.613	24.613	0.9933	0.9858	0.9580	1.0305	1.0092	43.41	
0.450	27.400	27.400	0.9925	0.9842	0.9653	1.0266	1.0120	45.61	
0.500	30.174	30.173	0.9918	0.9826	0.9712	1.0229	1.0154	46.95	
0.550	32.935	32.934	0.9910	0.9811	0.9761	1.0193	1.0194	47.40	
0.600	35.687	35.686	0.9903	0.9795	0.9803	1.0159	1.0240	46.91	
0.650	38.432	38.431	0.9895	0.9780	0.9839	1.0127	1.0293	45.42	
0.700	41.173	41.172	0.9888	0.9765	0.9870	1.0098	1.0355	42.87	
0.750	43.913	43.912	0.9880	0.9749	0.9897	1.0072	1.0427	39.19	
0.800	46.654	46.653	0.9873	0.9734	0.9922	1.0048	1.0512	34.29	
0.850	49.400	49.400	0.9865	0.9718	0.9944	1.0028	1.0613	28.02	
0.900	52.161	52.161	0.9858	0.9703	0.9964	1.0012	1.0734	20.26	
0.950	54.945	54.945	0.9850	0.9687	0.9983	1.0002	1.0885	10.87	
1.000	57.778	57.778	0.9842	0.9671	1.0000	1.0000	1.0806	0.0	

1-4 in terms of the deviation pressure $P_{\rm D}$ which is the deviation from Raoult's law

$$P_{\rm D} = P - \left[P_{2}' + x_{1}(P_{1}' - P_{2}')\right]$$

where P is the experimental mixture pressure and the P_i' values are the pure component vapor pressures. The deviation pressure plot emphasizes the scatter in the data more than a P vs. x_1 plot but has the disadvantage of not making obvious

Figure 7. Activity coefficients for the dichloromethane (1) + nitromethane (2) system: curves from Barker results; points from Mixon et al. method.

Figure 8. Activity coefficients for the dichloromethane (1) + chlorobenzene (2) system: curves from Barker results; points from Mixon et al. method. The ordinate values run from 0.920 to 1.160.

the existence of an azeotrope If one exists.

Binaries of dichloromethane with benzene and toluene

Table XIV. Calculated Data for the Dichloromethane (1) + Chlorobenzene (2) System at 347.97 K

LIQUID	MOLAR VOL	UMES, ML/	MOL: CO	MPONENT	1 = 69.42	COMPON	ENT 2 =	112.56
	P,	KPA	FUG COEFF	ACITY ICIENTS		ACT I COEFF I	VITY	GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.300 0.450 0.450 0.450 0.550 0.650 0.700 0.750 0.800 0.850 0.900	$\begin{array}{c} 16.223\\ 30.662\\ 45.043\\ 59.398\\ 73.749\\ 88.095\\ 102.425\\ 116.736\\ 131.037\\ 145.346\\ 159.678\\ 174.051\\ 188.480\\ 202.978\\ 217.543\\ 222.167\\ 224.635\\ 221.570\\ 226.1570\\ 226.357\\ 216.370\\ 226.357\\ 216.370\\ 226.367\\ 216.370\\ 226.367\\ 2$	16.223 30.661 45.041 59.395 73.747 88.092 102.423 116.733 116.733 116.733 116.733 116.733 116.733 116.733 116.733 116.733 116.733 125.677 174.050 128.479 202.977 217.542 223.166 246.844 261.569 276.348	0.9980 0.9949 0.9921 0.9894 0.9867 0.9840 0.9884 0.9762 0.9735 0.9762 0.9735 0.9657 0.9653 0.9653 0.9657 0.9651 0.9558 0.9551 0.9524 0.9544	0.9928 0.9869 0.9758 0.9758 0.9758 0.9595 0.9542 0.9488 0.9435 0.9488 0.9435 0.9223 0.9223 0.9169 0.9169 0.9116 0.9062 0.8955	0.0 0.4939 0.6715 0.7631 0.8192 0.8571 0.9051 0.9213 0.9344 0.9453 0.9344 0.9453 0.9544 0.9622 0.9690 0.9750 0.9802 0.9892 0.9892	1.0539 1.0483 1.0434 1.0393 1.0358 1.0324 1.0257 1.0225 1.0194 1.0165 1.0199 1.0116 1.0096 1.0078 1.0045 1.0030	1.0000 1.0001 1.0005 1.0011 1.0027 1.0040 1.0055 1.0075 1.0098 1.0123 1.0123 1.0183 1.0217 1.0255 1.0300 1.0356 1.0432 1.0541	0.0 7.19 13.62 219.35 24.47 29.00 32.91 36.14 38.65 40.40 41.38 41.59 41.01 39.67 37.55 34.61 30.73 30.73 30.73 30.73 31.9.25
0.950	291.264 306.433	291.264 306.433	0.9471 0.9443	0.8901 0.8846	0.9966 1.0000	1.0004 1.0000	1.0688 1.0877	10.82 0.0

Table XV. Calculated Data for the Dichloromethane (1) + Chlorobenzene (2) System at 398.10 K

LIQUID	HOLAR VO	LUMES, ML/	MOL: C	DHPONENT	1 = 69.42	COMPON	ENT 2 =	112.56
	Ρ,	КРА	FU	GACITY FICIENTS		ACTI COEFFI	VITY CIENTS	GE
X 1	EXPTL	CALC	1	2	¥1	1	2	J/MOL
0.0 0.050 0.100 0.200 0.250 0.350 0.400 0.450 0.550 0.600 0.650 0.750 0.750 0.800 0.850 0.800 0.850	84.806 128.151 171.636 215.303 259.190 303.337 392.570 437.736 448.317 529.335 575.810 622.762 670.199 718.102 766.438 815.178 844.407	84.806 128.146 171.630 215.296 259.182 303.330 347.779 392.567 437.732 483.315 529.333 575.811 622.762 670.200 718.101 766.439 815.177 864.408	0.992' 0.986' 0.979' 0.962' 0.956' 0.955' 0.933' 0.921' 0.921' 0.915' 0.909' 0.933' 0.927' 0.921' 0.909' 0.933' 0.921' 0.909' 0.933' 0.921' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.909' 0.921' 0.921' 0.921' 0.921' 0.921' 0.921' 0.921' 0.921' 0.956' 0.956' 0.956' 0.956' 0.950' 0.921' 0.921' 0.956' 0.921' 0.921' 0.921' 0.921' 0.921' 0.921' 0.956' 0.921' 0.925' 0.921' 0.925' 0.921' 0.925' 0.	0.9736 0.9489 0.9372 0.9272 0.9273 0.9142 0.9257 0.8499 0.8914 0.8800 4.0.8686 3.0.8341 3.0.8225 0.8341 3.0.8225 0.8341 3.0.793 3.0.793 3.0.7759 4.0.759 4	0.0 0.3620 0.5422 0.6503 0.7226 0.7744 0.8135 0.8442 0.8689 0.8894 0.9066 0.9213 0.9342 0.9454 0.9555 0.9645 0.9726 0.9801 0.9801	1.0485 1.0434 1.0391 1.0312 1.0276 1.0213 1.0185 1.0135 1.0135 1.0019 1.0069 1.0068 1.0006 1.00068	1.0000 1.0001 1.0005 1.0010 1.0028 1.0028 1.0054 1.0054 1.0054 1.0054 1.0054 1.0090 1.0112 1.0137 1.0167 1.0203 1.0205 1.0355 1.0385 1.0493 1.0693	0.0 7.39 14.03 25.07 29.48 33.16 36.11 38.34 39.83 40.57 40.54 39.79 37.98 35.26 31.37 26.02 18.78 9.26
0.950	968.274 1024.766	968.274 1024.766	0.878	7 0.7515 7 0.7383	0.9939	0.9977	1.0386 0.9524	-1.01 0.0

showed negative deviation from Raoult's law at all temperatures. The dichloromethane + nitromethane system showed a positive deviation at all temperatures. The dichloromethane + chlorobenzene binary was a mixed deviation system at 298 K, showing small positive deviations everywhere except at high dichloromethane concentrations. The deviations were negative for the other two isotherms at all concentrations of dichloromethane. None of the four binary systems exhibited azeotropes at any temperature.

Reduced Data

The calculated y_i , γ_i , and G^E values are reported in Tables VI-XV. Those values were obtained with the Mixon et al. data reduction method, using the Peng-Robinson equation of state (3) to estimate the vapor-phase fugacity coefficients. The "experimental" pressure values tabulated in Tables VI-XV are actually interpolated values from the cubic splined fits of the experimental *P* vs. x_1 values. (The fidelity with which the splined fits represent the actual experimental *P* values is shown in Tables II-V.) The calculated pressure values are from the Mixon et al. data reduction and show how well that method reproduces the original pressure data.

The calculated activity coefficient curves are shown in Figures 5–8 for both the Mixon et al. and the Barker (4) data reduction methods. The Barker results shown used the five-constant Redlich–Kister G^{E} equation for the binaries of dichloromethane with benzene, toluene, and chlorobenzene. The Wilson equation results are reported for the dichloromethane

Table XVI. Compound Constants for the Peng-Robinson **Equation of State**

compd	$T_{\rm c},{ m K}$	P _c , MPa	ω
dichloromethane	510.150	6.080	0.1990
benzene	562.160	4.898	0.2092
toluene	594 .025	4.236	0.2607
nitromethane	588.000	6.313	0.3460
chlorobenzene	632.350	4.519	0.2490

+ nitromethane system. The points in the figures represent the evenly spaced Mixon et al. values while the curves represent the Barker method results.

The Peng-Robinson equation of state was used for all the results shown. Table XVI lists the compound constants used for the Peng-Robinson equation. The binary interaction constant was set to 0.0 for all four binaries.

Some peculiarities in the tables and figures for the calculated results are worthy of comment. For example, note in Tables VI and VII that the activity coefficient for benzene appears to go through a maximum near the $x_1 = 0$ end. The significant digits for the activity coefficients certainly do not extend to the fourth decimal digit but, nevertheless, it is reasonable to accept as valid a "flatness" in the benzene activity coefficient curve (if not an actual maximum) for this almost ideal system. Note in Tables VIII and IX, and in Figure 6, that toluene behaves in the same manner but without exhibiting a maximum.

The relative sensitivities of the infinite dilution activity coefficients obtained from the Mixon et al. and the Barker methods have been discussed in several preceding papers in this series. The Mixon et al. result is determined by the shape of the P vs. x1 curve near the end point whereas the Barker result is obtained by the fit of the G^{E} equation over the entire binary composition range. Sometimes the results differ appreciably, as shown by the right end of the 298.05 K curve in Figure 7. Note in Figure 3 how small the deviation from Raoult's law is at 298.05 K at high x_1 values. The points in Figure 3 appear smooth enough but as discussed in previous papers-for example, (5)-errors in the 0.05 mmHg range can have a large

effect when the deviation is small. Hence, one would tend to have more confidence in the Barker result in this instance.

A much more obvious example of the effect of scatter on the calculated results is illustrated in the 398.10 K isotherm in Figures 4 and 8. The $x_1 = 0.7891$ point (803.3 kPa) is obviously out of line, and other points on the isotherm show an unusual amount of scatter. As shown by the "smooth" values at 398.10 K in Table V, the cubic splined fit was allowed to fit most of the bad points quite closely. That "overfitted" splined fit has been reported here to illustrate the effect on the Mixon et al. activity coefficient curves when even slightly scattered data are fitted too closely.

The result of the overfitting is shown in Figure 8 where the activity coefficient curves at 398.10 K are obviously wrong for the Mixon et al. method. Anyone who needs the best possible activity coefficient curves for the dichloromethane + chlorobenzene system should first arbitrarily smooth the P vs. x_1 curve and use the smoothed values as input to the data reduction methods. Usually, the Barker method does an effective job of smoothing the P vs. x_1 data but, in this case, a relatively small amount of scatter affects it almost as much as the Mixon et al. method.

Registry No. Dichloromethane, 75-09-2; benzene, 71-43-2; toluene, 108-88-3; nitromethane, 75-52-5; chlorobenzene, 108-90-7.

Literature Cited

- Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1979, 24, 16.
 Mixon, F. O.; Gomowski, B.; Carpenter, B. H. Ind. Eng. Chem. Fundam. 1985, 4, 455.
- Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15, (3) 59.
- (4)
- Barker, J. A. *Aust. J. Chem.* **1953**, *6*, 207. Khurma, J. R.; Muthu, O.; Munjai, S.; Smith, B. D. *J. Chem. Eng. Data* **1983**, *28*, 412. (5)

Received for review August 13, 1984. Accepted January 16, 1985. The financial support received from the National Science Foundation Grant CPE-6201579 and from the Industrial Participants in the Thermodynamics Research Laboratory is gratefully acknowledged.

Excess Enthalpies of Some Ester + Alcohol Binary Mixtures

Josefa Fernández, Mercedes Pintos, María C. Baluja, Eulogio Jiménez, and M. I. Paz Andrade*

Departamento de Fisica Fundamental, Facultad de Fisica, Universidad de Santiago, Santiago de Composteia, Spain

The excess molar enthalples of the binary liquid mixtures methyl butanoate + normal alcohol (C4-C10) and propyl ethanoate + normal alcohol (C3-C5) have been determined at atmospheric pressure and 298.15 K as a function of mole fraction. The apparatus used was a standard Calvet microcalorimeter equipped with a device allowing the exclusion of a vapor phase. The mixtures studied are all highly endothermic ($H^{E} > 0$), and the values of the excess molar enthalples increase with length of the hydrocarbon chain of the alcohol. The $H^{E}-x$ curves are practically symmetrical, with maxima at mole fractions of alcohol slightly below 0.5.

Introduction

Continuing with the work described in earlier articles (1, 2), we have determined the excess molar enthalples of the binary liquid mixtures formed by a linear ester (methyl butanoate or propyl ethanoate) and a normal alcohol (ranging from 1-butanol to 1-decanol in the case of methyl butanoate, and from 1propanol to 1-pentanol in the case of propyl ethanoate), the measurements being made at 298.15 K and over the entire range of concentrations.

Experimental Section

The chemical products used were supplied by Fluka (Buchs, Switzerland). All were better than 99 mol % pure as supplied except the propyl acetate, which was purified before use by washing with saturated aqueous NaCl solution, drying with MgSO₄, and triple distillation in a rectifying column, the final purity being 99.6 mol %. Refractive indices and densities were measured with a Zeiss refractometer (Carl Zeiss, Jena, Germany) and a densimeter-vibratometer (Anton Paar, Graz, Austria). The values measured (Table I) agree well with pub-